Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Fang Yang, ${ }^{\text {a }}$ Chang-Cang Huang, ${ }^{\text {a* }}$ Han-Hui Zhang, ${ }^{\text {a }}$ Yongxiu Liu, ${ }^{\text {b }}$ Zhao-Xun Lian ${ }^{\text {a }}$ and Guang-Can Xiao ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China, and ${ }^{\mathbf{b}}$ Fujian Health School, Fuzhou,
Fujian 350001, People's Republic of China

Correspondence e-mail: yhfpower@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.035$
$w R$ factor $=0.110$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

A new mixed-valence $\mathrm{Cu}{ }^{11} / \mathrm{Cu}^{1}$ complex: chlorobis(1,10-phenanthroline)copper(II) dichlorocuprate(I)

A new mixed-valence $\mathrm{Cu}^{\mathrm{II}} / \mathrm{Cu}^{\mathrm{I}}$ complex, dark-green $[\mathrm{CuCl}-$ $\left.(\text { phen })_{2}\right]\left[\mathrm{CuCl}_{2}\right]\left(\right.$ phen $=$ phenanthroline, $\left.\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)$, consisting of isolated $\left[\mathrm{Cu}(\text { phen })_{2} \mathrm{Cl}\right]^{+}$cations and $\left[\mathrm{CuCl}_{2}\right]^{-}$anions, has been synthesized under hydrothermal conditions. The $\left[\mathrm{Cu}(\text { phen })_{2} \mathrm{Cl}\right]^{+}$cation contains a five-coordinated Cu^{2+} ion, coordinated by two bidentate phenanthroline ligands and a Cl atom. Each dichlorocuprate counter-ion contains a monovalent Cu^{+}ion, which occupies a special position on a twofold axis.

Comment

Considerable attention has been paid to the exploration of the structural and chemical properties of mixed-valence copper complexes with organic and inorganic ligands, due to their importance in a vast range of chemical and biochemical catalytic systems. All known $\mathrm{Cu}^{\mathrm{II}} / \mathrm{Cu}^{\mathrm{I}}$ complexes can be subdivided into four groups according to the environment of the $\mathrm{Cu}^{\mathrm{II}}$ and Cu^{I} atoms and their crystallographic structural properties (Dunal-Jurčo et al., 1988). Complexes belonging to the first group, containing a $\mathrm{Cu}^{\mathrm{II}}$ cation and a Cu^{I} anion, include $\left[\mathrm{Cu}^{\mathrm{II}}(\text { phen })_{2}(\mathrm{CN})\right]^{+}\left[\mathrm{Cu}^{\mathrm{I}}(\text { phen })(\mathrm{CN})_{2}\right]^{-} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (DunalJurčo et al., 1993) and $\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{phen})_{2}(\mathrm{CN})\right]^{+}\left[\mathrm{Cu}^{\mathrm{I}}(-\right.$ phen $\left.)(\mathrm{CN})_{2}\right]^{-} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (phen $=$ phenanthroline; Wicholas \& Wolford, 1974). Structures of five-coordinated copper(II) complexes including the $\left[\mathrm{Cu}^{\mathrm{II}}(\text { phen })_{2} \mathrm{Cl}\right]^{+}$cation and copper(I) complexes including the $\left[\mathrm{Cu} X_{2}\right]^{-}$anion have also been reported, viz. $\left[\mathrm{Cu}^{\mathrm{II}}(\text { phen })_{2} \mathrm{Cl}\right]^{+}[Y]^{-}(Y=$ monovalent anion; Boys et al., 1981; Boys, 1988; Chilkevich et al., 1987; Murphy et al., 1997), [(2,9-n-phenyl-1,10-phen $\left.)_{2} \mathrm{Cu}^{\mathrm{I}}\right]^{+}\left[\mathrm{Cu}^{\mathrm{I}} \mathrm{Cl}_{2}\right]^{-}$ (Pallenberg et al., 1995) and [(2,9-diphenyl-1,10phen $\left.)_{2} \mathrm{Cu}^{\mathrm{I}}\right]^{+}\left[\mathrm{Cu}^{\mathrm{I}} \mathrm{Cl}_{2}\right]^{-}$(Klemens et al., 1990), $\left[\mathrm{Cu}^{\mathrm{I}}(\text { phen })_{2}\right]^{+}-$ $\left[\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}_{2}\right]^{-}$(Healy et al., 1985). However, $\mathrm{Cu}^{\mathrm{II}} / \mathrm{Cu}^{\mathrm{I}}$ complexes containing two-coordinated Cu^{I} are relatively rare.

(I)

The asymmetric unit of the title compound, (I), contains one $\left[\mathrm{Cu}(\text { phen })_{2} \mathrm{Cl}\right]^{+}$cation and two halves of $\left[\mathrm{CuCl}_{2}\right]^{-}$anions in special positions. In the cation, four N atoms from two bidentate phenanthroline ligands and one Cl atom form an approximately trigonal-bipyramidal arrangement about the Cu^{2+} ion, with atoms $\mathrm{Cl} 1, \mathrm{~N} 1$ and N 3 occupying equatorial positions, while atoms N 2 and N 4 occupy the axial positions (Fig. 1). The angles in the equatorial plane (Table 1) are

Received 22 December 2003
Accepted 29 January 2004
Online 7 February 2004

Figure 1
View of (I), with 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
distorted from the ideal trigonal value of 120°, with two larger angles of $125.05(7)(\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 1)$ and $121.05(9)^{\circ}(\mathrm{N} 1-$ $\mathrm{Cu} 1-\mathrm{N} 3)$, and one smaller angle of $113.90(6)^{\circ}(\mathrm{N} 1-\mathrm{Cu} 1-$ $\mathrm{Cl} 1)$.

The Cu^{2+} ion deviates from the $\mathrm{N} 1 / \mathrm{N} 3 / \mathrm{Cl} 1$ plane by 0.010 (2) \AA. The axial $\mathrm{Cu}-\mathrm{N}$ bond lengths of 1.989 (2) and 2.000 (2) \AA are significantly shorter than the equatorial $\mathrm{Cu}-$ N bond distances of 2.133 (2) and 2.136 (2) \AA. The $\mathrm{Cu}^{\mathrm{II}}-\mathrm{Cl} 1$ bond distance of 2.2909 (8) \AA is comparable with the value of 2.28 (1) \AA observed in $\left[\mathrm{Cu}^{\mathrm{II}} \mathrm{Cl}\left\{\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}\right\}\right]\left[\mathrm{Cu}^{\mathrm{I}} \mathrm{Cl}_{2}\right]$ (Marsh \& Trofter, 1971). The bite angles of the phenanthroline ligands [80.12 (9) and $80.19(9)^{\circ}$] are normal for Cu^{I} complexes of phenanthroline. The inter-ligand dihedral angle is $66.29(9)^{\circ}$. Similar stereochemical features for the copper ion have been observed in other complexes containing the trigonal-bipyramidal $\left.\left[\mathrm{Cu}^{\mathrm{II}} \text { (phen) }\right)_{2} \mathrm{X}\right]^{+}$moiety (Dunal-Jurčo et al., 1993; Murphy et al., 1997, 1998; Boys et al., 1981; Boys, 1988). It is of interest to note the existence of the $\left[\mathrm{CuCl}_{2}\right]^{-}$ anions, which are reported in the literature (Bowmaker et al., 1973; Pallenberg et al., 1995; Klemens et al., 1990). Both of the $\left[\mathrm{CuCl}_{2}\right]^{-}$anions are located on twofold axes and are nearly linear, with $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ angles of 177.44 (5) and 176.38 (9) ${ }^{\circ}$. There is a slight difference between the bond lengths of $\mathrm{Cu} 2-$ $\mathrm{Cl} 2[2.0894(7) \AA$] and $\mathrm{Cu} 3-\mathrm{Cl} 3[2.069$ (1) \AA], but both are consistent with those reported in the literature (Marsh \& Trofter, 1971; Tsuboyama et al., 1984).

Experimental

The title compound was prepared by slow addition of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.1 \mathrm{~g}, 0.6 \mathrm{mmol})$ and phen $(0.12 \mathrm{~g}, 0.6 \mathrm{mmol})$ to a 5 ml solution of 1,3,5-benzenetricarboxylic acid dissolved in ethanol. The mixture was heated in a sealed stainless steel $(25 \mathrm{ml})$ Teflon-lined vessel at 423 K for 3 d and then cooled to room temperature. The resulting product
was filtered off and dried in air; well shaped dark-green crystals were obtained.

Crystal data

$\left[\mathrm{CuCl}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{CuCl}_{2}\right]$
$M_{r}=593.86$
Monoclinic, $P 2 / c$
$a=14.4063$ (5) \AA
$b=12.6196$ (6) \AA
$c=13.3400$ (5) \AA
$\beta=111.480(3)^{\circ}$
$V=2256.79(16) \AA^{3}$
$Z=4$
$D_{x}=1.748 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=12-18^{\circ}$
$\mu=2.26 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, green
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$
Data collection
Rigaku Weissenberg IP diffractometer
$\omega-2 \theta$? scans
Absorption correction: none
5081 measured reflections 5081 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.110$
$S=1.01$
5081 reflections
300 parameters
H -atom parameters constrained

> 3786 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=27.5^{\circ}$
> $h=-18 \rightarrow 17$
> $k=-16 \rightarrow 16$
> $l=-17 \rightarrow 17$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.136(2)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2909(8)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.989(2)$	$\mathrm{Cu} 2-\mathrm{Cl} 2$	$2.0894(7)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.133(2)$	$\mathrm{Cu} 3-\mathrm{Cl} 3$	$2.0692(10)$
$\mathrm{Cu} 1-\mathrm{N} 4$	$2.000(2)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$80.12(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$113.90(6)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$121.05(9)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	$94.59(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 4$	$95.32(8)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 1$	$125.05(7)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$93.79(9)$	$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{Cl} 1$	$96.12(6)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4$	$169.29(9)$	$\mathrm{Cl} 2-\mathrm{Cu} 2-\mathrm{Cl} 2^{\mathrm{i}}$	$177.44(5)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 4$	$80.19(9)$	$\mathrm{Cl} 3-\mathrm{Cu} 3-\mathrm{Cl} 3^{\mathrm{ii}}$	$176.38(9)$

Symmetry codes: (i) $-x, y, \frac{3}{2}-z$; (ii) $1-x, y, \frac{3}{2}-z$.
All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined using a riding model, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent atom.

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

We gratefully thank Mr Guang-Can Xiao and Mrs Hua Yin for collecting the crystallographic data. The work was financially supported by the Foundation of Education Bureau of Fujian Province (No. JA00137) and Development of the Science and Technology Foundation of Fuzhou University (No. XKJ-QD-00-06).

References

Bowmaker, G. A., Brockliss, L. D. \& Whiting, R. (1973). Aust. J. Chem. 26, 2942.

Boys, D. (1988). Acta Cryst. C44, 1539-1541.

metal-organic papers

Boys, D., Escobar, C. \& Martinez, S. (1981). Acta Cryst. B37, 351-355.
Chilkevich, A. K., Ponomarev, B. P., Lyavrentjeu, P. P. \& Atoumjan, L. O. (1987). Koord. Khim. 13, 1532.

Dunal-Jurčo, M., Ondrejovič, G. \& Melník, M. (1988). Coord. Chem. Rev. 83, 1-28.
Dunal-Jurčo, M., Potočňúk, I., Cíbik, J. \& Kabešovú, M. (1993). Acta Cryst. C49, 1479-1482, and references therein.
Healy, P. C., Engelhardt, L. M., Patrick, V. A. \& White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2541-2545.
Klemens, F. K., Palmer, C. E. A., Roland, S. M., Fanwich, P. E., McMillin, D. R. \& Sauvage, J. P. (1990). New J. Chem. 14, 129.
Marsh, W. C. \& Trofter, J. (1971). J. Chem. Soc. A, pp. 1482-1486.
McArdle, P. (1995). J. Appl Cryst. 28, 65.

Molecular Structure Corporation (1999). TEXSAN (Version 1.10) and TEXRAY. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Murphy, G., Nagle, P., Murpy, B. \& Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2645-2652.
Murphy, G., O’Sullivan, C., Murphy, B. \& Hathaway, B. (1998). Inorg. Chem. 37, 240-248.
Pallenberg, A. J., Koenig, K. S. \& Barnhart, D. M. (1995). Inorg. Chem. 34, 2833-2840.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tsuboyama, S., Kobayashi, K., Sakurai, T. \& Tsuboyama, K. (1984). Acta Cryst. C40, 1178-1181.
Wicholas, M. \& Wolford, T. (1974). Inorg. Chem. 13, 316-318.

[^0]: (C) 2004 International Union of Crystallography

